451,610 research outputs found

    Farming Systems Research

    Get PDF
    Report on the February 1986 Inter Center Workshop on Farming Systems Research (FSR) held at ICRISAT Center, Hyderabad, India. The Workshop, which was suggested by TAC, which noted that 14% of the system's resources was devoted to farming systems in some form. The meeting was intended to help centers develop a unified understanding of how FSR should be approached, to assess the relevance, impact, and priority of such research in the CGIAR, and to outline its future directions. It drew on the stripe review of 1978 on this subject. A statement by representatives of the nine IARCs attending is attached.Agenda document, TAC 39th Meeting, March 1986

    Fungi in Danish soils under organic and conventional farming

    Get PDF
    A multi-soil study was conducted in Denmark including 29 sites, 8 classified as ‘Organic’, 11 as ‘Conventional with manure and synthetic fertilisers’ and 10 as ‘Conventional with synthetic fertilisers’. The variability of fungal abundance within the three farming systems and the long-term effects of different farming systems on fungal propagules in soil were evaluated. Fungal abundance showed large variations within all three farming systems and this variability reduced the possibility to obtain general conclusions on fungal composition in soils under different farming systems. This was illustrated by the results on total propagule numbers of filamentous fungi and yeasts. Penicillium spp. and Gliocladium roseum were more abundant under organic than conventional farming, while Trichoderma spp. were most abundant in conventionally farmed soils with synthetic fertilisers. These results were not altered after adjusting for possible differences in basic soil properties like total-C and N, extractable P, CEC, base saturation and soil density. The paper discusses whether the differences in fungal abundance are characteristics of a farming system itself or associated with certain management factors being more prevalent in one farming system than the other

    Changing Farming Systems – Financial Implications for Farming Businesses

    Get PDF
    Future prosperity of farming businesses depends not only on immediate prospects, but also on the capability to adapt to changing circumstances. In looking to the future, farm managers need to assess where the current farming system is taking them, and whether changing to an alternative farming system might be more profitable. There are various techniques for assessing the profitability of alternative farming systems, but frequently the cost of transition is overlooked. The financial consequences of transition to a new farming system are assessed for two case study farms using a spreadsheet tool (STEP), developed by the authors. The tool assists farm managers in assessing the risk of transition strategies as well as comparing rotations.Farm Management,

    Profitability of Organic Farming Systems

    Get PDF
    The majority of the farmers I meet, that are interested in organic farming are financially driven. It is important that the message on financial returns from organic farming is clear. In cattle production systems when we look at the figures, the majority of cattle farmers are making a positive gross margin but are spending some of the premia cheque to cover fixed costs. In the organic situation costs are generally lower but so is gross output. The net margin delivered on organic beef farms is on average higher than the average beef farmer. The targets I have set on the paper that I believe are achievable on the majority of organic beef farms and should be profitable enterprises. When the financial analysis is completed on organic dairy farms, it must be noted that when measured in net margin achieved per litre or per cow the results are as good as the best dairy farmers in the country, however the key issue is stocking rate. Only dairy farmers stocked up to about 1.7 livestock units per hectare will increase net margin. Farms stocked higher than this will loose out unless the milk price gap widens significantly. In the tillage sector my colleagues produce crop budgets each year, last year the budgets went out the window as harvest returns disastrous due to the weather. The organic tillage budget produced in the paper shows excellent returns for organic tillage crops. The cost of imports and lack of supply is keeping the price up, the weakening of sterling may have an effect later on, however even if organic grain prices drop significantly, the returns are mush better than conventional tillage. This is an option Irish tillage farmers should be exploring

    Lowland farming system inefficiency in Benin (West Africa):

    Get PDF
    This paper uses a directional distance function and a single truncated bootstrap approach to investigate inefficiency of lowland farming systems in the Benin Republic. First, we employed a dual approach to estimate and decompose short-run profit inefficiency of each farming system into pure technical, allocative and scale inefficiency and also into input and output inefficiency. Second, an econometric analysis of factors affecting the inefficiency was generated using a single truncated bootstrap procedure to improve inefficiency analysis statistically and obtain consistent estimates. In the short run, scale, allocative and output inefficiency were found to be the main sources of inefficiency. Based on inefficiency results, the inefficiency of lowland farming systems is the most diverse. Compared to a vegetable farming system, technical inefficiency is significantly higher if farmers switch to a rice farming system. Scale, allocative, output, and input inefficiency are significantly lower with an integrated ricevegetable farming system and there was high prevalence of increasing returns to scale in the integrated rice-vegetable farming system. Water control and lowland farming systems are complements and play a significant role in the level of inefficiency. Input inefficiency shows the difficulty that the producers face in adjusting the quality and quantity of seeds and fertilizers. The paper provides empirical support for efforts to promote an integrated rice-vegetable farming system in West Africa lowlands to increase food security. Keywords Lowlands . Inefficiency . Bootstrap . Beni

    Co-designing climate-smart farming systems with local stakeholders: A methodological framework for achieving large-scale change

    Get PDF
    The literature is increasing on how to prioritize climate-smart options with stakeholders but relatively few examples exist on how to co-design climate-smart farming systems with them, in particular with smallholder farmers. This article presents a methodological framework to co-design climate-smart farming systems with local stakeholders (farmers, scientists, NGOs) so that large-scale change can be achieved. This framework is based on the lessons learned during a research project conducted in Honduras and Colombia from 2015 to 2017. Seven phases are suggested to engage a process of co-conception of climate-smart farming systems that might enable implementation at scale: (1) “exploration of the initial situation,” which identifies local stakeholders potentially interested in being involved in the process, existing farming systems, and specific constraints to the implementation of climate-smart agriculture (CSA); (2) “co-definition of an innovation platform,” which defines the structure and the rules of functioning for a platform favoring the involvement of local stakeholders in the process; (3) “shared diagnosis,” which defines the main challenges to be solved by the innovation platform; (4) “identification and ex ante assessment of new farming systems,” which assess the potential performances of solutions prioritized by the members of the innovation platform under CSA pillars; (5) “experimentation,” which tests the prioritized solutions on-farm; (6) “assessment of the co-design process of climate-smart farming systems,” which validates the ability of the process to reach its initial objectives, particularly in terms of new farming systems but also in terms of capacity building; and (7) “definition of strategies for scaling up/out,” which addresses the scaling of the co-design process. For each phase, specific tools or methodologies are used: focus groups, social network analysis, theory of change, life-cycle assessment, and on-farm experiments. Each phase is illustrated with results obtained in Colombia or Honduras

    Productivity and Profitability of a Cotton-based Production System under Organic and Conventional Management in India

    Get PDF
    The debate on the relative benefits of conventional and organic farming systems is more topical than ever. The achievements of conventional high-input agriculture were largely brought about at the cost of deteriorating soil fertility; furthermore, they were based to a large extent on fossil fuels. Developing more sustainable farming practices on a large scale is of utmost importance. However, information about the performance of agricultural production systems under organic and conventional management in tropical and subtropical regions is largely lacking. This study aimed to assess agronomic and economic data from a long-term farming systems comparison trial under semi-arid conditions in central India. Four two-year crop rotations comprising cotton-soybean-wheat under biodynamic, organic and conventional management were investigated, including one conventional system with and one without transgenic Bt cotton, between 2007 and 2010. Results showed 13% lower yields in organic compared to conventional systems. Yields in cotton, soybean and wheat were on average 14 %, 7% and 15% lower, respectively. However, production costs of organic systems were on average 32% lower than those of conventional systems, which led to similar gross margins in all systems. To our knowledge, this is the first long-term field trial comparing the agronomic and economic performance of organic, conventional and conventional+Bt cotton-based farming systems. The results of our study suggest that organic farming is a promising alternative to conventional farming in cotton-based production systems in central India. The less capital intensive nature of organic systems may be particularly interesting for smallholder farmers as it decreases dependence on loans for farm inputs. Therefore, our findings have the potential to be useful for decision-making and in turn may lead to a redirection of agricultural policies

    Maintaining ecological soil functions - techniques in organic farming systems

    Get PDF
    The ecological soil functions (e.g. habitat and living space, production and utilization, ecological regulation) have to be taken into account and maintained by farming systems. Organic farming systems can provide for this by using suitable crop rotations, manure management methods and tillage techniques
    corecore